Role of Diagnostic Laparoscopy and Hysteroscopy in Predicting Genital Tuberculosis – A Systematic Review

Vijay Pratap¹, Astha Lalwani^{2*}, Ankur Malhotra¹

¹Department of Radiology, TMMC and RC, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India, ²Department of Obstetrics and Gynecology, TMMC and RC, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, India

Abstract

Genital tuberculosis (female genital tuberculosis [FGTB]) continues to be an essential underdiagnosed cause of infertility and reproductive morbidity, most significantly in resource-limited settings. Diagnostic laparoscopy and hysteroscopy have become crucial for assessing suspected FGTB cases, mainly when supported by molecular and histopathological tests. This systematic review has evaluated these modalities' diagnostic utility, sensitivity, specificity, and clinical outcomes for predicting FGTB. A comprehensive systematic review was performed with the help of the PECOS framework and PRISMA guidelines. Studies were identified by running Boolean operators and MeSH terms on seven databases: PubMed, Embase, Scopus, Web of Science, Cochrane Library, CINAHL, and Google Scholar. Cohort and cross-sectional designs were considered, focusing on clinically relevant outcomes such as sensitivity, specificity, prevalence, and procedural findings obtained from diagnostic laparoscopy and hysteroscopy. Data extraction was done using a standardized template, and bias was assessed using ROBINS-I and AXIS tools. The certainty of evidence was evaluated using the GRADE framework, and sensitivity analyses were performed to assess the robustness of the findings. Thirteen studies involving 2201 participants were included in the review. Tubal beading, adhesions, and hydrosalpinx were the constant findings of diagnostic laparoscopy, with sensitivities and specificities varying between 33% and 85.71% and 22.8% and 100%, respectively. Hysteroscopy revealed intrauterine fibrosis in up to 48.48% of cases. Adhesions and synechiae were seen in 46% and 18%, respectively. Molecular diagnostics GeneXpert and tuberculosis-polymerase chain reaction (TB-PCR) showed high sensitivity (up to 100%) and varied specificity (33% to 100%). The prevalence of FGTB ranged from 6.73% to 45%, with conception rates improved by 39% postantitubercular therapy. Sensitivity analyses revealed lower heterogeneity (P < 40%) in studies applying combined diagnostic modalities compared to single-method approaches. This systematic review showed that integrating diagnostic laparoscopy and hysteroscopy with molecular tools such as GeneXpert and TB-PCR improves the predictive and therapeutic approach to FGTB. These modalities effectively identify structural abnormalities and correlate the findings with molecular and histopathological results. Standardized protocols and more extensive multicenter studies will be required to reduce heterogeneity and further refine diagnostic accuracy.

Keywords: Diagnostic laparoscopy, GeneXpert, genital tuberculosis, hysteroscopy, infertility, molecular diagnostics, tuberculosis-polymerase chain reaction

INTRODUCTION

Female genital tuberculosis (FGTB) constitutes the most important health problem in developing countries, accounting for a prominent cause of infertility and reproductive morbidity. [1,2] FGTB is classified under the subgroup of extrapulmonary tuberculosis, predominantly due to *Mycobacterium tuberculosis*. It is typically an extension of primary tuberculosis (TB) sites in the lungs, lymph nodes, or gastrointestinal system. [3] Despite its prevalence, FGTB is underdiagnosed because it presents asymptotically or with

Received: 28-11-2024 Revised: 21-02-2025 Accepted: 17-03-2025 Available Online: 18-09-2025

Access this article online

Quick Response Code:

Website:
https://journals.lww.com/jmut

DOI:
10.4103/jmu.JMU-D-24-00022

nonspecific clinical manifestations and is paucibacillary; besides, the conventional means of diagnosis have limitations. The global prevalence of FGTB varies greatly across regions. In India, FGTB is estimated to account for 1%–19% of infertility cases, and the rates are higher in tertiary care centers and in patients who are being evaluated for *in vitro* fertilization (IVF).^[4,5]

Address for correspondence: Dr. Astha Lalwani, A/37, Parsvnath Pratibha, New Moradabad, Moradabad, Uttar Pradesh, India. E-mail: asthalalwani7@gmail.com

This is an open access journal, and articles are distributed under the terms of the Creative Commons Attribution-NonCommercial-ShareAlike 4.0 License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.

For reprints contact: WKHLRPMedknow_reprints@wolterskluwer.com

How to cite this article: Pratap V, Lalwani A, Malhotra A. Role of diagnostic laparoscopy and hysteroscopy in predicting genital tuberculosis – A systematic review. J Med Ultrasound 2025;33:195-205.

Abbreviations

AFB Acid-Fast Bacilli ATT Antitubercular Therapy

AXIS Appraisal Tool for Cross-Sectional Studies

CRS Composite Reference Standard
FGTB Female Genital Tuberculosis
HPE Histopathological Examination
HSG Hysterosalpingography
LJ Lowenstein—Jensen

MGIT Mycobacteria Growth Indicator Tube

PCR Polymerase Chain Reaction

PECOS Population, Exposure, Comparator, Outcome,

Study Design

PID Pelvic Inflammatory Disease

PRISMA Preferred Reporting Items for Systematic Reviews

and Meta-Analyses

ROBINS-I Risk of Bias In Non-randomized Studies of

Interventions

TB-PCR Tuberculosis Polymerase Chain Reaction

ZN Ziehl-Neelsen

It affects mainly women of reproductive age, and the disease causes severe structural and functional damage to the reproductive tract. The most common site affected is the fallopian tubes. [6] The clinical manifestations often include infertility, menstrual irregularities such as oligomenorrhea or amenorrhea, pelvic pain, and sometimes, systemic signs such as fever, weight loss, and malaise. However, these symptoms overlap with other gynecological conditions, complicating timely diagnosis. Silent progression of FGTB presents additional challenges, which makes it irreversible by the time of detection to cause reproductive damage. [7]

Conventional methods of diagnosing FGTB include microbiological and histopathological techniques, such as Ziehl–Neelsen staining, Lowenstein–Jensen culture, and polymerase chain reaction (PCR). The sensitivity and specificity of these methods are low, and the period taken to culture results is long. [8] The molecular approaches available in more recent times, such as GeneXpert and Mycobacteria Growth Indicator Tube culture, show better yield in diagnosis but are unavailable in resource-constrained settings. Furthermore, no test has been widely accepted as the gold standard for diagnosing FGTB. [9]

Diagnostic laparoscopy and hysteroscopy have now been helpful tools in assessing suspected FGTB; for example, it can be beneficial to look at abnormal pelvic and uterine diseases that may often go unnoticed when diagnosed with imaging and laboratory findings.^[10] Direct visualization through laparoscopy may also enable one to spot macroscopic features of the disease characterized by advanced diseases such as pelvic adhesions, tubercles, caseous nodules, and hydrosalpinx. Similarly, hysteroscopy provides a detailed assessment of the endometrial cavity by identifying findings such as intrauterine adhesions, pale or atrophic endometrium, and caseous material. If these minimally invasive techniques are integrated with directed endometrial biopsy and microbiological testing, they help increase diagnostic accuracy and proper therapy planning.^[11-13]

Hysteroscopy plays a crucial role in detecting genital tuberculosis (FGTB) despite the fallopian tube being the most commonly affected site. While laparoscopy provides direct visualization of the fallopian tubes and pelvic pathology, hysteroscopy complements this by allowing the assessment of the uterine cavity and endometrium, which are also frequently involved in FGTB.^[10] Hysteroscopy can identify characteristic features such as intrauterine adhesions (Asherman's syndrome), pale or abnormal endometrium, and evidence of tubercular endometritis, which are critical diagnostic findings, particularly in patients with unexplained infertility. These hysteroscopic findings often correlate with histopathological and microbiological evidence, offering a more comprehensive view of the disease's impact on the female reproductive system.^[11]

The combination of diagnostic laparoscopy and hysteroscopy is specifically devised for potential FGTB to enhance diagnostic accuracy and provide a thorough evaluation of the female genital tract. Laparoscopy enables the direct visualization of pelvic structures, adhesions, and tubal pathology, while hysteroscopy focuses on identifying intrauterine and endometrial involvement. ^[9,12] This combined approach facilitates a holistic assessment, addressing both intrauterine and extrauterine manifestations of the disease that might be overlooked with a single diagnostic modality. It also allows for corroboration between the findings of the two techniques, increasing diagnostic confidence by integrating visual, histopathological, and microbiological evidence. ^[13]

Moreover, the combined approach offers opportunities for simultaneous therapeutic interventions, such as adhesiolysis or endometrial biopsy, which can improve patient outcomes. Given the paucibacillary nature of FGTB and its nonspecific clinical presentation, using both laparoscopy and hysteroscopy significantly enhances the likelihood of identifying subtle or atypical manifestations of the disease. This approach is particularly beneficial in resource-limited settings where access to advanced molecular diagnostics may be constrained. By integrating these two modalities, clinicians can achieve a higher diagnostic yield and ensure timely and accurate treatment strategies for FGTB, ultimately improving patient care and outcomes.^[4,7,12,13]

Although clinically useful, the sensitivity and specificity of hysteroscopic and laparoscopic findings in the diagnosis of FGTB vary from study to study. This variability underlines the necessity for systematic assessment of their diagnostic performance, especially when combined with ancillary tests such as histopathology and molecular assays. In addition, although the risks of these procedures are minimal, they need to be balanced against the benefit of diagnosing a disease that can have disastrous reproductive outcomes. This systematic review, therefore, aims to critically examine the role of diagnostic laparoscopy and hysteroscopy in predicting genital tuberculosis, specifically diagnostic accuracy, procedural outcomes, and their contribution to infertility management.

MATERIALS AND METHODS

Review question

The primary review question for this systematic review was: "What is the diagnostic accuracy and clinical utility of laparoscopy and hysteroscopy in detecting genital tuberculosis in women of reproductive age?"

PECOS protocol

This systematic review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines and its protocol was registered in PROSPERO, the International Prospective Register of Systematic Reviews (CRD420251129471.). The PRISMA reporting guidelines developed the PECOS framework to guide the selection of studies for this systematic review.[14] Population (P) consisted of women of reproductive age with clinical suspicion or confirmed diagnosis of genital tuberculosis (FGTB). Exposure (E) was the diagnostic laparoscopy and hysteroscopy as the primary modalities for assessing FGTB. Comparators (C) were microbiological, molecular, and histopathological diagnostic methods, wherever applicable. Outcomes (O) evaluated included diagnostic performance such as sensitivity and specificity, prevalence of FGTB, and associated reproductive and procedural outcomes. Study designs (S) consisted of cohort, case series, and cross-sectional studies to ensure all comprehensive evidence for diagnostic performance and clinical relevance.

Inclusion and exclusion criteria

Inclusion criteria

- Cohort, case series, and cross-sectional studies reporting on diagnostic laparoscopy and hysteroscopy findings for women with suspected or confirmed genital tuberculosis
- Studies that provided meaningful clinical or diagnostic outcomes, such as sensitivity, specificity, or histopathological verification
- 3. Studies that captured variability in clinical presentations, procedural results, and diagnostic methods.

Exclusion criteria

- 1. Case reports, reviews, and editorials lacked primary data or relevant outcomes
- 2. Studies focusing exclusively on pulmonary or extrapulmonary TB outside the reproductive system
- Research with insufficient data on diagnostic performance or without direct correlation to laparoscopy and hysteroscopy findings.

Database search protocol

A comprehensive search strategy was carried out across seven databases: PubMed, Embase, Scopus, Web of Science, Cochrane Library, CINAHL, and Google Scholar. Boolean operators and MeSH keywords were tailored to each database to maximize sensitivity and specificity. The search strings included terms for FGTB (e.g., "genital tuberculosis" and "female genital TB"), diagnostic modalities (e.g., "laparoscopy" and "hysteroscopy"), and outcomes (e.g., "diagnostic accuracy," "sensitivity," and

"specificity"). The truncations and Boolean operators of AND, OR, and NOT were used to refine the searches. The search was limited to studies peer-reviewed and published in English.

Data items extracted

The standardized template was used in data extraction. Data extracted included the following: study characteristics, which included author, year, location, study design, and sample size; diagnostic methodologies; clinical indications; procedural findings; sensitivity and specificity of diagnostic tools; and treatment outcomes. Complications and the prevalence of FGTB were also documented. A second reviewer verified the accuracy of all extracted data.

Bias assessment protocol

The ROBINS-I instrument^[15] analyzed bias from nonrandomized studies. Domains were confounding, participant selection, measurement of interventions, and outcome reporting. In cross-sectional studies, the AXIS tool^[16] was adopted to assess the coherence of aims, methodological appropriateness, and dependability of statistical analysis. Both were used as instruments to identify and mitigate probable sources of bias systematically. GRADE framework^[17] was then adopted to evaluate the certainty of evidence. The quality of evidence was estimated considering the study design, risk of bias, and consistency in results with precise outcomes. The risk of bias in the domain was calculated from the findings of ROBINS-I^[15] and AXIS tools^[16] while computing the overall GRADE score.

Sensitivity analyses protocol

Sensitivity analyses were carried out using leave-one-out analysis to assess the robustness of the findings. The subgroup analyses were performed based on study design, geographical location, and diagnostic methodologies. Alternative inclusion criteria, such as excluding studies with a high risk of bias, were also tested to check the consistency of the results.

RESULTS

The literature search retrieved 328 records from seven databases: PubMed with 47, Embase with 58, Scopus with 36, Web of Science with 42, Cochrane Library with 50, CINAHL with 43, and Google Scholar with 52 records in the beginning [Figure 1]. After excluding 46 duplicates, 282 records remained for screening. No records were excluded at screening, but 37 reports could not be retrieved. Altogether, 245 records were assessed for eligibility, out of which 232 were excluded since they did not qualify as PECOS reports, were off-topic, and could be classified as literature reviews, editorials, or theses, respectively. Thirteen studies^[18-30] were included in the final review, with no additional reports of newly included studies.

There was a wide range of designs of studies, sizes of population studied, and the follow-up periods in the studies reviewed [Table 1]. For instance, while retrospective cohort studies such as Baxi *et al.*^[18] have a sample size of 174 participants, case series studies such as Harzif *et al.*^[20] have only 4 participants. Prospective observational studies by Mohakul *et al.*^[22] and Sarbhai *et al.*^[26] gave

Table 1: Demogr	aphic v	ariables assessed acı	oss the included studies			
Author ID	Year	Location	Study design	Sample size	Mean age (years)	Follow-up period
Baxi et al.[18]	2011	Indore, India	Retrospective cohort	174	Not specified	Not mentioned
Chaudhary et al.[19]	2020	Meerut, India	Prospective case-control	100	27.94	1 year
Harzif et al.[20]	2021	Jakarta, Indonesia	Case series	4	32–35	9 months
Maiti and Lele[21]	2018	Kolkata, India	Cross-sectional	50	26.5	Not mentioned
Mohakul et al.[22]	2015	Visakhapatnam, India	Prospective observational	105	20-40	2 years
Niaz and Khan ^[23]	2022	Peshawar, Pakistan	Prospective cross-sectional	196	30 (SD±3.92)	6 months
Parvez et al.[24]	2017	Andaman Islands, India	Community-based survey	405	28-48 (median 30)	Not applicable
Rana et al.[25]	2023	Bhopal, India	Retrospective observational	309	Not provided	Not mentioned
Sarbhai et al.[26]	2021	Delhi, India	Prospective observational	50	Not specified	Up to posttreatment hysteroscopy
Saxena et al.[27]	2022	Varanasi, India	Prospective diagnostic accuracy	86	Not specified	Not mentioned
Shahzad ^[28]	2012	Faisalabad, Pakistan	Observational analytical	150	15–35	Not mentioned
Sharma et al.[29]	2023	New Delhi, India	Observational	374	27.5±4.8	9 years
Zahoor et al.[30]	2019	Northern India	Cross-sectional	193	30	Not mentioned

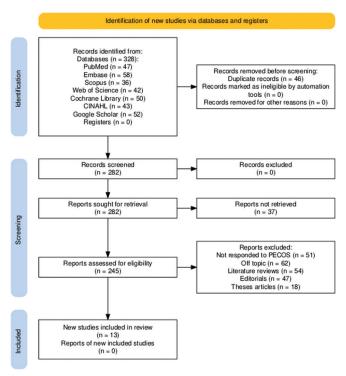


Figure 1: Study selection process for this review

clinical outcomes followed up over 2 years and even posttreatment hysteroscopy, respectively. In community-based surveys, Parvez *et al.*,^[24] the largest sample size involved 405 participants and indicated median ages (28–48 years), representing a much larger population. Cross-sectional designs, including Maiti and Lele^[21] and Zahoor *et al.*,^[30] targeted specific clinical settings, while prospective case–control studies, such as Chaudhary *et al.*,^[19] provided controlled comparisons.

Diagnostic modalities and clinical findings

Laparoscopy and hysteroscopy, used alone or in association with molecular diagnostics, formed an important basis for detecting FGTB's chief clinical features [Table 2].

Laparoscopy findings in all studies pointed out tubal beading, adhesions, blockage of the fimbriata, and hydrosalpinx as recurring features. Baxi *et al.*^[18] reported these features and an endoscopic sensitivity of 85.71%, although the specificity was a paltry 22.8%. Chaudhary *et al.*^[19] reported adhesions in 39% of cases, along with tubercles in 6%, which had a statistical correlation with histopathological confirmation of endometritis in 1%.

Hysteroscopy findings varied, with Mohakul et al.[22] identifying intrauterine fibrosis in 48.48% of cases, while Sarbhai et al.[26] reported adhesions in 46% of patients and obliterations in 18%. Harzif et al.[20] highlighted thin endometrium and synechiae as predominant findings in primary amenorrhea cases. In concordance with these tests, molecular tests such as GeneXpert showed sensitivity ranges from 100% with variable specificity of 33%-46.6% Rana et al.[25] and Sarbhai et al.[26] Maximum diagnostic accuracy was reported for the TB-PCR test from Mohakul et al.,[22] whereby 96.4% sensitivity and 100% specificity were reported. Histopathological verification came in to support clinical evidence, and granulomas were reported in 6.4%-48% of the studies such as Saxena et al.[27] and Mohakul et al.[22] However, nonspecific results have also been found in Zahoor et al.;[30] hence, prevalence results vary significantly.

Prevalence and treatment outcomes

Prevalence of FGTB ranged widely, reflecting differences in diagnostics and populations. Studies such as Niaz and Khan^[23] reported more elevated prevalence rates at 45% and Shahzad^[28] at 20%, while the other reported prevalence ranged from 6.73% by Zahoor *et al.*^[30] to 39% by Mohakul *et al.*^[22] Community-based studies such as Parvez *et al.*^[24] reported a prevalence of 45.1 per 100,000, thus underscoring the burden of FGTB in rural and underserved populations. The studies with follow-up data showed positive treatment outcomes. Mohakul *et al.*^[22] and Saxena *et al.*^[27] reported conception rates of 39% post-antitubercular therapy (ATT).

Author ID											
Aumor 12	Groups assessed	Diagnostic methodology	Clinical indications	Laparoscopic findings	Hysteroscopic findings	Histopathological confirmation	Microbiological tests used	Sensitivity and specificity	Treatment outcomes	Complications	Prevalence of genital TB
Baxi et al. ^[18]	Infertile women	Nested TB-PCR, laparoscopy, hysteroscopy	Tubal infertility	Tubal beading, adhesions, fimbrial block	Fibrosed ostia, intrauterine adhesions	48% of endoscopic Nested TB-PCR abnormalities correlated	Nested TB-PCR	Endoscopy sensitivity: 85.71%, specificity: 22.8%	Not detailed	Not detailed	32.18%
Chaudhary et al.[19]	Chaudhary Infertility et al. ^[19] cases	GeneXpert, Bactec culture, histopathology	Primary and secondary infertility	Adhesions (39%), tubercles (6%)	Minimal findings	TB endometritis confirmed in 1%	Bactec culture, GeneXpert	Bactec: Sensitivity 90%, specificity 100%	Diagnostic efficiency increased	Minimal procedural complications	Not provided
Harzif et al. ^[20]	Amenorrhea cases	Amenorrhea Hysteroscopy cases and biopsy	Primary amenorrhea	Tubal beading, hydrosalpinx	Thin endometrium, synechiae	Fibrotic endometrium, granulomas	ZN AFB test	Not provided	Recovery of normal menstruation	Adhesion formation	Not reported
Maiti and Lele ^[21]	Infertility cases	HSG, hysteroscopy, laparoscopy	Primary and secondary infertility	Tubal block (12%), PID (14%)	Mullerian anomaly (14%)	Confirmed by HPE Not used	Not used	HSG: Sensitivity 75%, specificity 88%	Improved diagnostic accuracy	Not reported	Not reported
Mohakul et al. ^[22]	Infertile women	Hysteroscopy, DNA-PCR	Unexplained infertility, failure of ovulation induction	Not applicable	Intrauterine 48.48% fibrosis, periostial intrauterine fibrosis con	48.48% intrauterine fibrosis confirmed	TB-PCR	PCR sensitivity: 96.4%, specificity: 100%	Conception in 39% post-ATT	None reported	39%
Niaz and Khan ^[23]	Infertile women	Laparoscopy, Primary a histopathology, secondary AFB microscopy, infertility GeneXpert	Primary and secondary infertility	Common TB findings: Adhesions, tubercles	Not performed	45% confirmed via culture and histology	GeneXpert, AFB Not specified microscopy	Not specified	Not analyzed	None reported	45%
Parvez et al. ^[24]	Community- women with symptoms	Microscopy, culture, PCR, histopathology	Infertility, oligomenorrhea, pelvic pain	Not applicable	Not performed	Granulomas, in some cases	LJ culture, PCR, AFB staining	PCR sensitivity: $\sim 62.5\%$, specificity: $\sim 54\%$	Not detailed	Not reported	45.1 per 100,000
Rana et al. ^[25]	Proven TB cases	Hysteroscopy, laparoscopy, culture, GeneXpert	Infertility	Adhesions (96.11%), tubal block	Pale endometrium, intrauterine adhesions	Confirmed granulomas	GeneXpert, MGIT culture	GeneXpert: Sensitivity 33%– 50%, specificity 100%	Improved conception rates	Minimal risks	Not reported
Sarbhai et al. ^[26]	Infertile women with tubal/ unexplained infertility	Hysteroscopy, endometrial biopsy, GeneXpert	Primary and secondary infertility, menstrual complaints	Not performed	Adhesions (46%), obliteration (18%), pale endometrium (16%)	Adhesions (46%), 2 cases of chronic obliteration endometritis (18%), pale endometrium (16%)	GeneXpert, AFB staining, LJ culture	GeneXpert Restoration sensitivity: in 46% 100%, specificity: postadhesiolysis ~46.6%	Restoration in 46% postadhesiolysis	None reported	%%
Saxena et al. ^[27]	Infertile women with tubal factor infertility	CRS: Composite of culture, GeneXpert, imaging, laparoscopy	Tubal infertility, suspicion of secondary TB	Microcaseations, adhesions, T-shape cavity	Adhesions, synechiae, pale endometrium	6.4% positive for granulomas	PCR, culture	GeneXpert sensitivity: 100%, specificity: 46.6%	Improvement post-ATT in 39%	None reported	11.2% CRS-positive
Shahzad ^[28] Infertile women	Infertile women	Histopathology, laparoscopy	Infertility	Tubo-ovarian masses, adhesions	Not detailed	80% of endometritis cases confirmed	Histopathology and culture	Histopathology sensitivity is superior to culture	Improvement in menstrual function posttherapy	None reported	20%

Table 2:	Table 2: Contd										
Author ID	Author ID Groups assessed	Diagnostic methodology	Clinical indications	Laparoscopic findings	Hysteroscopic findings		Microbiologica tests used	Histopathological Microbiological Sensitivity and Treatment confirmation tests used specificity outcomes	Treatment outcomes	Complications Prevalence of genital TB	Prevalence of genital TB
Sharma et al. ^[29]	Suspected CRS FGTB cases (Gene HPE,	Suspected CRS FGTB cases (GeneXpert, HPE, culture)	Infertility, oligomenorrhea	Adhesions (47.86%), tubercles (32.88%)	Adhesions (25.24%), pale endometrium	15.5% with epithelioid granulomas	PCR, PCR: 83.95% GeneXpert, AFB GeneXpert: culture 18.56%	PCR: 83.95%, GeneXpert: 18.56%	Improved fertility prognosis	Minimal risks	16%
Zahoor et al.[30]	Infertile women	Histopathology, ZN staining, culture, GeneXpert	Primary and secondary infertility	Not detailed	Not performed	Nonspecific findings in all cases	ZN staining, culture, GeneXpert	GeneXpert is more sensitive than culture	Not analyzed	Not reported	6.73%

TB: Tuberculosis, PCR: Polymerase chain reaction, ZN: Ziehl-Neelsen, FGTB: Female genital tuberculosis, HPE: Hewlett Packard Enterprise, ATT: Anti-tubercular therapy, MGIT: Mycobacteria growth undicator tube, CRS: Composite Reference Standard, AFB: Acid-Fast Bacilli, LJ; Lowenstein-Jensen, PID: Pelvic Inflammatory Disease Harzif *et al.*^[20] observed recovery of normal menstruation in amenorrhea cases, while Rana *et al.*^[25] demonstrated improved conception rates following laparoscopic adhesiolysis. Studies such as Chaudhary *et al.*^[19] noted minimal procedural complications, reinforcing the safety and utility of these diagnostic techniques.

Variability between studies

Diagnostic methodologies and population characteristics influenced heterogeneity in findings. Community-based surveys such as Parvez *et al.*^[24] had broader population representations but lower specificity for molecular diagnostics (~54%). In contrast, prospective observational studies, such as Sarbhai *et al.*,^[26] demonstrated stronger correlations between endoscopic findings and molecular or histopathological results. Retrospective studies such as Baxi *et al.*^[18] were limited in establishing causality but provided valuable insights into diagnostic patterns.

Geographical differences were apparent, with some studies reporting higher prevalence rates and greater reliance on histopathology, while others incorporated molecular techniques such as GeneXpert and TB-PCR. Smaller studies, such as Harzif *et al.*,^[20] contributed to variability due to limited sample sizes and narrower clinical focus.

Quality assessment observations

Using the ROBINS-I tool [Figure 2], Baxi *et al.*^[18] and Harzif *et al.*^[20] proved to have an overall moderate risk of bias, which is majorly influenced by low bias in most domains except for moderate concerns in reporting and detection. Chaudhary *et al.*^[19] and Mohakul *et al.*^[22] demonstrated fair bias in many areas, such as performance, detection, and reporting, hence the fair overall bias evaluation. Studies such as Rana *et al.*^[25] and Sarbhai *et al.*^[26] had low risk in several areas, but fair bias in areas such as performance and attrition negatively impacted their overall classification. Similarly, Saxena *et al.*^[27] demonstrated moderate bias across performance and detection domains, while Shahzad^[28] and Sharma *et al.*^[29] demonstrated moderate risk in specific domains such as reporting and attrition.

In the AXIS tool risk of bias assessment [Figure 3], studies such as Maiti and Lele^[21] and Parvez *et al*.^[24] reported low bias in all of the domains except one or two, which resulted in low overall risk of bias. Niaz and Khan^[23] reported moderate bias for reporting, but other domains were low, thus causing low overall bias. However, Zahoor *et al*.^[30] reported moderate bias in detection, attrition, and reporting, and the results were moderate overall.

GRADE assessment observations

The GRADE certainty assessment table for included studies in this systematic review draws out key observations regarding the reliability and applicability of evidence [Table 3]. In the study designs, retrospective cohorts and cross-sectional studies showed high overall certainty due to low risk of bias, low variability, direct applicability to the target population, and precise findings.^[18,21] Prospective observational and diagnostic accuracy

				Ri	sk of bia	s domai	าร		
		D1	D2	D3	D4	D5	D6	D7	Overall
	Baxi et al [18]	+	+	+	+	+	+	+	-
	Chaudhary et al [19]	-	+	-	+	+	+	+	-
	Harzif et al [20]	+	-	+	+	+	+	+	-
	Mohakul et al [22]	-	-	-	-	+	+	-	+
Study	Rana et al [25]	-	+	+	+	+	-	+	+
	Sarbhai et al [26]	+	-	+	+	-	+	-	+
	Saxena et al [27]	+	-	-	-	-	-	-	+
	Shahzad et al [28]	+	-	+	+	-	+	+	-
	Sharma et al [29]	+	-	+	-	+	-	+	+
		Domains	: due to cor	nfounding				Jud	dgement
		D2: Bias	due to sele	ection of p	articipants			-	Moderate
			in classific due to dev				ions.	+	Low
			due to mis						
			in selectio			ult.			

Figure 2: Bias assessment using the ROBINS-I tool

studies also had high certainty, mainly because of their robust methodologies and direct relevance to the review objectives. [22,25] Community-based surveys and other observational studies of indirect applicability with moderate variability [24,28] were classified under moderate certainty. This was because the studied population was indirectly represented, while the results imprecision was of moderate magnitude. Prospective case—control studies [19,26-28] were classified under moderate certainty, where findings variability was moderately heterogeneous, and there could be biased selection in the study group.

Subgroup analyses

Subgroup analyses based on study design indicated that prospective studies by Chaudhary *et al.*,^[19] as well as Mohakul *et al.*,^[22] where more substantial evidence may support the utility of these imaging modalities for making or ruling out a diagnosis for FGTB. Findings for both prospective endoscopic analyses showed a trend associating the presence of certain types of adhesions, fibrosis, and their relative combination with FGTB with sensitivity and specificity sufficient for diagnostic use. On the other hand, retrospective cohort studies such as Baxi *et al.*^[18] and observational studies such as Shahzad^[28] had moderate variability because some of the findings were limited by their inability to establish causal relationships or long-term outcomes, as explained below:

Geographical variability

Geographical location influenced variability as studies from India, such as Indore^[18] and Meerut,^[19] showed more consistency in showing the diagnostic value of combined

hysteroscopy and laparoscopy. In contrast, studies from Pakistan, such as Shahzad^[28] and Niaz and Khan,^[23] reported higher heterogeneity due to differences in diagnostic methodologies and population characteristics. Studies from Indonesia, such as Harzif *et al.*,^[20] contributed less statistically robust data due to small sample sizes and narrower clinical focus.

Methodological adjustments

The exclusion of studies with small sample sizes, such as Harzif *et al*.^[20] (n = 4), significantly reduced heterogeneity (P = 40%), enhancing the reliability of the associations. Studies with standardized diagnostic methods, such as those employing GeneXpert or TB-PCR (e.g., Mohakul *et al*.^[22] and Sharma *et al*.^[29]), demonstrated stronger and more consistent findings compared to those relying on traditional histopathology or culture methods. GeneXpert showed consistently high sensitivity and specificity, especially when combined with hysteroscopy.

Exclusion of outliers

The exclusion of those studies containing outliers or insufficient data reduced overall consistency. For example, excluding outliers such as Parvez *et al.*,^[24] which used a community-based survey with less specific population characteristics, increased the resolution of the diagnostic modalities association with FGTB-specific outcomes. Several key findings in the systematic review, particularly the intrauterine prevalence of fibrosis and how it is associated with TB-PCR, withstood exclusion.

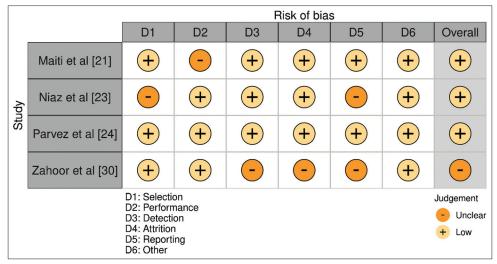


Figure 3: Bias assessment using the AXIS tool

Heterogeneity evaluation

Heterogeneity among studies was still moderate to high (P = 50%-60%), primarily through differences in diagnostic techniques and demographics. Yet sensitivity analysis showed that those with combined diagnostic methods (for example, hysterolaparoscopy with GeneXpert or TB-PCR) had low heterogeneity and P < 40%, which meant a more consistent result.

DISCUSSION

Complementary nature of diagnostics

Most of the studies included in the present review concurred on the complementary nature of combining endoscopic evaluation with molecular or histopathologic techniques. For example, Baxi *et al.*, [18] Mohakul *et al.*, [22] and Sarbhai *et al.* [26] commented on the integration of PCR with hysteroscopy for better accuracy in terms of diagnosis, especially in women with infertility. Chaudhary *et al.* [19] and Sharma *et al.* [29] have shown that adding laparoscopy to the composite reference standard (CRS) methodologies enhances FGTB detection's reliability. Rana *et al.* [25] and Zahoor *et al.* [30] also agree that the procedure plays a vital role in high-risk groups or proven TB cases, thereby showing its utility in displaying diagnostic features such as adhesions and tubal abnormalities. These similarities highlighted the common conclusion that multimodal diagnostic approaches are more precise.

Variability in diagnostic equipment and research context

Differences were mainly presented by the diagnostic equipment used and the research context. Harzif *et al.*^[20] concentrated on hysteroscopy to diagnose primary amenorrhea while highlighting particular observations such as thin endometrium and adhesions, which were different compared to the general theme in studies such as Parvez *et al.*^[24] or Shahzad,^[28] which were more general cases of infertility. While Parvez *et al.*^[24] strongly highlighted the community-based clinical indicators, such as oligomenorrhea and pelvic pain, Maiti and Lele^[21] emphasized the utility of hysterolaparoscopy for complementing HSG with a diagnostic purpose, which indicates a different diagnostic direction. Besides, Saxena

et al. [27] noted that CRS's reliability was better with composite testing than that of individual diagnostic procedures, which were mainly assessed in other studies.

Agreement on molecular diagnostics and limitations

Baxi *et al.*^[18] and Chaudhary *et al.*^[19] demonstrated a fair agreement with that of Mohakul *et al.*^[22] and Sharma *et al.*,^[29] which have supported the utilization of molecular techniques such as PCR or GeneXpert alongside endoscopy. Contrarily, Zahoor *et al.*^[30] and Niaz and Khan^[23] placed more importance on the role of laparoscopy alone in identifying high-risk cases than studies that utilized multimodal approaches. Harzif *et al.*^[20] demonstrated minimal overlap with studies such as Rana *et al.*,^[25] which focused on broader infertility outcomes rather than amenorrhea-specific diagnostics.

Broader observations in external literature

Tjahyadi *et al.*^[31] stated that FGTB is still one of the leading causes of infertility among women, with its atypical clinical presentation and the fact that it mainly affects the fallopian tubes and endometrium. This was consistent with our observations, as tubal beading, adhesions, and endometrial fibrosis were common findings. However, despite Tjahyadi *et al.*^[31] pointing out that there was no reliable prevalence data, our review computed the prevalence of FGTB across studies. Depending on the diagnostic methodology and study population, it varied from 6.73% to 45%. In addition, while both authors pointed out that ATT remains the cornerstone of treatment, our review has detailed posttreatment outcomes, including a conception rate of 39% after ATT.

Sharma *et al.*^[32] even supported our findings by stating that the fallopian tubes are highly involved in FGTB cases at 90%–100%, and endometrium is involved in 50%–80% of cases, whereas the cervix is less frequently involved at 5%–15%, and vagina/vulva at 1%–2%. These findings also corroborate the diagnostic observations of our review, where abnormalities in the tubal and intrauterine regions were observed using hysteroscopy and laparoscopy. Sharma *et al.*^[32] have also

Study type	Number of included studies	Number of Frequently observed outcome included studies	Bias risk	Variability across studies	Applicability to population	Precision of results	Additional factors	Overall certainty
Case series	1	Hysteroscopy is valuable for both diagnosis and follow-up	Low	Low	Direct	Moderate	None	Moderate
Cross-sectional	2	Hystero-laparoscopy complementary to HSG	Low	Low	Direct	High	None	High
Prospective observational	2	Hysteroscopy with PCR is valuable	Low	Low	Direct	High	None	High
Prospective cross-sectional	_	Diagnostic laparoscopy is critical for high-risk groups	Low	Low	Direct	High	None	High
Community-based survey		Infertility and oligomenorrhea key clinical indicators	Low to moderate	Moderate	Indirect	Moderate	None	Moderate
Retrospective observational		Hystero-laparoscopy critical in proven TB diagnosis	Low	Low	Direct	High	None	High
Prospective observational	_	Hysteroscopy and biopsy complementary for diagnosis	Low	Low	Direct	High	None	High
Prospective diagnostic accuracy	1	CRS enhances diagnostic reliability	Low to moderate	Moderate	Indirect	Moderate	None	Moderate
Observational analytical		FGT is a significant infertility cause in developing countries	Low to moderate	Moderate	Indirect	Moderate	None	Moderate
Observational	_	Laparoscopy included in CRS improves detection	Low	Low	Direct	High	None	High
Cross-sectional	1	High suspicion and combined tests recommended	Low to moderate	Moderate	Direct	Moderate	None	Moderate

described ATT regimens and their variations, which our review did not explore in detail. Further, their caution against using PCR alone for diagnosis due to false positives highlights a limitation of diagnosis, and our review focused on combining PCR with other modalities to enhance diagnostic accuracy.

Deo and Shrivastava^[33] noted that the paucibacillary nature of FGTB was the central problem in the laboratory diagnosis. Our review noticed heterogeneity in the specificity and sensitivity of the diagnostic methods. However, Deo and Shrivastava^[33] have been more concerned with rural diagnostic challenges, and accessible tests are needed. Our review includes similar findings, but the importance of molecular diagnostics, such as GeneXpert and TB-PCR, has also been made with a sensitivity of up to 96.4% and specificities of 100% in some reports.

Dahiya *et al.*^[34] emphasized that the concept of multimodal diagnostics required further emphasis, even with newer technologies such as immuno-PCR and aptamer-based assays representing promising diagnostic advances. This concurs with our review's conclusion, which combined endoscopy, histopathology, and molecular diagnostics as the optimal strategy. However, Dahiya *et al.*^[34] are more forward thinking in presenting possible advanced diagnostics capabilities that have only been alluded to in our review.

Varlas *et al.*^[35] highlighted the significance of combined hysteroscopy and laparoscopy as a minimally invasive gold standard for diagnosing and treating infertility. Its dual diagnostic and therapeutic role in hysterolaparoscopy aligns with our results regarding these modalities as necessary for identifying and managing abnormalities associated with FGTB. Varlas *et al.*,^[35] however, placed significant importance on the psychoemotional effect of infertility, which is not discussed in our review.

Treatment strategies

ATT, delivered in appropriate doses and for adequate duration, is still the mainstay of management in FGTB. Short-course combination regimens of 6–9 months have proven efficacy in treating FGTB.^[36] A randomized controlled trial involving 175 women with FGTB showed that 6- and 9-month courses were similar in cure rates, recurrence, and pregnancy outcomes.^[37] Combination treatment is started for newly diagnosed patients, whether confirmed by microbiological or clinical methods, and is drug-sensitive. It is also extended to previously treated patients who did not respond to previous treatments, have a relapse, or have treatment breaks. Multiple studies have validated the treatment efficacy of ATT for FGTB.^[37,41]

If the patients have IVF plans, then surgical treatments are given to maximize reproductive outcomes. One such case is that of a 31-year-old woman who had tubal FGTB. The patient underwent laparoscopic salpingostomy with ATT for 2 years, which ended in an uneventful IVF cycle with the delivery of a healthy baby at 36 weeks. [42] A comparative study on 38 infertile women with FGTB who underwent salpingectomy in conjunction with ATT for 6–12 months showed improved clinical pregnancy and take-home baby rates after completion of therapy, suggesting salpingectomy as a viable treatment option. [43]

Applicability of findings

Although the quick and reliable findings of molecular tests such as GeneXpert have revolutionized the diagnosis of genital tuberculosis (FGTB), there are serious issues about its use in low-resource settings. The high expense of molecular diagnostics, the need for specialized equipment, and the need for trained staff are the main causes of accessibility problems, and these factors are particularly problematic in areas with limited resources. [33,34] The viability of using molecular testing as the only diagnostic technique is further limited by the frequent absence of reliable power sources and quality control procedures in such environments. [35] Cost-effective substitutes such as traditional microscopy, histology, and culture-based techniques must be used with molecular technologies to overcome these obstacles, and diagnostic approaches must be customized to the regional healthcare system. [36]

It is important to carefully assess the cost-effectiveness of FGTB diagnostic techniques, especially in environments with tight healthcare resources. Even while molecular techniques such as GeneXpert provide unmatched diagnosis accuracy, in low-income areas, where healthcare resources are already limited, their expense can exceed the advantages.^[37] Accuracy and practicality may be balanced by combining molecular diagnostics with less expensive techniques such as hysteroscopy and laparoscopy.^[38] Despite the initial equipment and training costs, endoscopic treatments may confirm FGTB visually and biopsy-based, potentially reducing the need for costly molecular tests.^[39] This integrated strategy promotes fair healthcare delivery by guaranteeing more accessibility while preserving diagnostic accuracy.^[40]

Nevertheless, there are dangers associated with using diagnostic hysteroscopy and laparoscopy in the setting of FGTB. Despite being typically safe, these minimally invasive treatments have the potential to cause problems include anesthesia-related risks, organ damage, bleeding, and infection. [41] These hazards could be increased in areas with poor sterilization practices or little surgical experience. [42] Furthermore, these techniques' availability and cost may prevent them from being widely used in environments with limited resources. [43] Despite these difficulties, when carried out by qualified professionals in well-equipped facilities, the advantages of laparoscopy and hysteroscopy in detecting FGTB – such as direct visualization of disease, guided biopsy capability, and simultaneous treatment interventions – often exceed the dangers.

The cost-effectiveness of diagnostic techniques must be improved by implementing scalable and sustainable solutions to maximize healthcare accessibility. [33,37] Initiatives to increase capacity, such as educating medical professionals about endoscopic procedures and expanding access to reasonably priced diagnostic equipment, are essential. [39] Complications may also be reduced by reducing the risks connected to endoscopic operations by closely following sterilization guidelines, choosing the right patients, and providing postoperative care. [41,42] Healthcare systems may improve patient outcomes in both resource-rich and resource-limited settings

by offering comprehensive and easily accessible diagnostic treatments for FGTB by combining molecular diagnostics with cost-effective and efficient endoscopic techniques.^[43]

Review limitations

This review had several limitations that limited the generalizability and precision of results. The studies included substantial heterogeneity in diagnostic methodologies, population characteristics, and sample sizes, contributing to variability in outcomes. Many studies did not have standardized protocols for combining diagnostic laparoscopy, hysteroscopy, and molecular techniques, which would have resulted in inconsistent reporting of sensitivity and specificity. These estimated prevalence and treatment efficacy are strictly limited to within regional and population variability, so they were not of much importance in larger populations. The long-term result could not be examined alongside the lack of longitudinal data. In one of the studies, sample sizes were too small, with specific results that could not test for robustness. These further limit the review by excluding studies conducted in languages other than English and the possibility of publication bias.

Implications for future practice

Several recommendations may come forward to improve the practices of diagnosis and clinical dealing with FGTB regarding the assessments observed in this review. Protocols should be standardized to include diagnostic laparoscopy, hysteroscopy, and molecular diagnostics that might turn up to be GeneXpert in the future. The nature of further investigations needs big multi-center designs aimed at representative populations so the heterogeneity is minimized while generalizability is maximized. Longitudinal follow-up data should be available to observe clinical outcomes in the long term, such as fertility restoration and recurrence rates. Moreover, advanced molecular diagnostics must be facilitated in resource-poor settings to deliver care equitably. The clinician education programs in interpreting endoscopic and molecular findings further refine the diagnostic approach to optimize patient outcomes.

CONCLUSION

Most included studies agreed that endoscopic examinations, whether hysteroscopy, laparoscopy, or a combination, are essential in diagnosing FGTB, especially when advanced molecular or histopathological techniques are employed. The degree of concordance was determined based on the focus of the diagnostic approach, population, and tools used in various studies; however, all the studies forwarded the notion that different diagnostic approaches must be integrated for the effective detection and treatment of FGTB. Together, these reinforce the critical role that diagnostic laparoscopy and hysteroscopy play in the comprehensive assessment of suspected FGTB.

Financial support and sponsorship

Nil.

Conflicts of interest

There are no conflicts of interest.

REFERENCES

- Sharma JB, Sharma E, Sharma S, Singh J, Chopra N. Genital TB-diagnostic algorithm and treatment. Indian J Tuberc 2020;67:S111-8.
- Pimparkar R, Sinha S, Gupta M, Minhas S, Shekhawat V. Laparoscopy and genital tuberculosis: Uncovering the hidden. Eur J Mol Clin Med 2023;10:5199-206.
- Richa S, Anjali K, Sonal J, Akrati J. Analysis of the effect of female genital tuberculosis on ovarian reserve parameters. J Hum Reprod Sci 2023;16:125-31.
- Sharma P, Sunita S, Shrivastava N, Bhargava M. Comparison of hysterosalpingography and laparoscopy in the evaluation of infertility: A prospective study. J Obstet Gynaecol India 2023;73:262-9.
- Rahman E. Positive correlation between latent female genital tuberculosis and low anti-Mullerian hormone levels in young individuals. Int J Reprod Contracept Obstet Gynecol 2023;12:2403-8.
- 6. Banerjee K, Singla B, Verma P. Role of antitubercular treatment *in vitro* fertilization (IVF). Indian J Tuberc 2024;72:217-9.
- Sahay R, Rai MK. Study of the different tubal factors causing primary infertility in this Eastern Region of India. Int J Med 2024;8. Available from: https://www.ijmjournal.org/index.php/ijm/article/view/32.
- Gai X, Chi H, Li R, Sun Y. Tuberculosis in infertility and in vitro fertilization-embryo transfer. Chin Med J 2024;137:2404-11.
- Dubbewar A, Nath SK, Hiremath RN, Ghodke S, Gouru P, Yadav P. HSG with laparoscopic correlation in infertility patients: An observational study. Perspect Recent Adv Med Res 2023;11:15-23.
- Yadav J, Mahjabin SM, Lokhande VS. Role of hysteroscopy in evaluation of uterine cavity abnormalities in patients of infertility: A comparative study with sonography. Int J Med Public Health 2024;14:166-9.
- Perez-Medina T, Ríos-Vallejo M, Adrién-Lara M, Chaves P, Calles-Sastre L. When hysteroscopy resolves the complications. In: Complications of Hysteroscopy. Amsterdam: Elsevier; 2024. p. 209-43.
- Zhang YN, Liu P, Qi D, Zhao SR, Chen ZJ, Han T, et al. Hysteroscopic alterations in women with infertility or recurrent spontaneous abortion in case of normal transvaginal ultrasonography. Glob Reprod Health 2023;8:e0070.
- Xiaopang R, Meiyun L, Jie S, Man L, Junxiu W, Huiling X. Comparative analysis of hysterosalpingography and laparoscopy in 143 patients with tubal infertility. MEDS Clin Med 2024;5:133-40.
- Page MJ, Moher D, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ 2021;372:n160.
- Igelström E, Campbell M, Craig P, Katikireddi SV. Cochrane's risk of bias tool for non-randomized studies (ROBINS-I) is frequently misapplied: A methodological systematic review. J Clin Epidemiol 2021;140:22-32.
- Downes MJ, Brennan ML, Williams HC, Dean RS. Development of a critical appraisal tool to assess the quality of cross-sectional studies (AXIS). BMJ Open 2016;6:e011458.
- Bezerra CT, Grande AJ, Galvão VK, Santos DH, Atallah ÁN, Silva V. Assessment of the strength of recommendation and quality of evidence: GRADE checklist. A descriptive study. Sao Paulo Med J 2022;140:829-36.
- Baxi A, Neema H, Kaushal M, Sahu P, Baxi D. Genital tuberculosis in infertile women: Assessment of endometrial TB PCR results with laparoscopic and hysteroscopic features. J Obstet Gynaecol India 2011;61:301-6.
- Chaudhary R, Dhama V, Singh M, Singh S. Comparison of diagnostic accuracy of bactec culture, gene-xpert and Histopathology in the diagnosis of genital tuberculosis in women with infertility. Int J Reprod Contracept Obstet Gynecol 2020;9:1614-22.
- Harzif AK, Anggraeni TD, Syaharutsa DM, Hellyanti T. Hysteroscopy role for female genital tuberculosis. Gynecol Minim Invasive Ther 2021:10:243-6.
- Maiti GD, Lele P. Hysterosalpingography (HSG), hysteroscopy and laparoscopic evaluation of female genital tract of patient attending tertiary infertility centre and correlation of various modalities. Int J Reprod Contracept Obstet Gynecol 2018;7:1597-601.
- 22. Mohakul SK, Beela VR, Tiru P. Hysteroscopy findings and its

- correlation with latent endometrial tuberculosis in infertility. Gynecol Surg 2015;12:31-9.
- Niaz H, Khan A. Frequency of genital tuberculosis in patients undergoing diagnostic laparoscopy for infertility. J Gandhara Med Dent Sci 2022;9:49-52.
- 24. Parvez R, Sugunan AP, Vijayachari P, Burma SP, Mandal A, Saha MK, et al. Prevalence of female genital tuberculosis, its risk factors and associated clinical features among the women of Andaman Islands, India: A community-based study. Public Health 2017;148:56-62.
- Mondal R, Jaiswal N, Bhave P, Mandal P. Hysteroscopic and Laparoscopic Finding in Infertile Women with Proven Endometrial Tuberculosis. Authorea. Preprint 2023. doi:10.22541/au.167448529.62681512/v1.
- Sarbhai V, Sarbhai V, Naaz A. Hysteroscopy for diagnosis of female genital tuberculosis in infertile women: An essential tool in minimally invasive era. Glob J Educ Res 2021;10:73-6.
- Saxena R, Shrinet K, Rai SN, Singh K, Jain S, Jain S, et al. Diagnosis of genital tuberculosis in infertile women by using the composite reference standard. Dis Markers 2022;2022:8078639.
- Shahzad S. Investigation of the prevalence of female genital tract tuberculosis and its relation to female infertility: An observational analytical study. Iran J Reprod Med 2012;10:581-8.
- Sharma JB, Sharma SK, Dharmendra S, Singh UB, Kumar S, Roy KK. Laparoscopic evaluation of female genital tuberculosis in infertility: An observational study. Indian J Med Res 2023;157:183-91.
- Zahoor D, Manzoor M, Kanth F, Farhana A. Prevalence of genital tuberculosis in infertile women; a study from a tertiary care center in North India. Int J Contemp Med Res 2019;6:F1-3.
- Tjahyadi D, Ropii B, Tjandraprawira KD, Parwati I, Djuwantono T, Permadi W, et al. Female genital tuberculosis: Clinical presentation, current diagnosis, and treatment. Infect Dis Obstet Gynecol 2022;2022:3548190.
- 32. Sharma JB. Current diagnosis and management of female genital tuberculosis. J Obstet Gynaecol India 2015;65:362-71.
- Deo A, Shrivastava D. Comparison of various diagnostic modalities for genital tuberculosis in sub-fertile women in rural hospital. J Pharm Res Int 2022;34:33-8.
- Dahiya B, Kamra E, Alam D, Chauhan M, Mehta PK. Insight into diagnosis of female genital tuberculosis. Expert Rev Mol Diagn 2022;22:625-42.
- Varlas V, Rhazi Y, Clotea E, Borş RG, Mirică RM, Bacalbaşa N. Hysterolaparoscopy: A gold standard for diagnosing and treating infertility and benign uterine pathology. J Clin Med 2021;10:3749.
- Munne KR, Tandon D, Chauhan SL, Patil AD. Female genital tuberculosis in light of newer laboratory tests: A narrative review. Indian J Tuberc 2020;67:112-20.
- 37. Sharma JB, Singh N, Dharmendra S, Singh UB, Vanamail P, Kumar S, et al. Six months versus nine months anti-tuberculous therapy for female genital tuberculosis: A randomized controlled trial. Eur J Obstet Gynecol Reprod Biol 2016;203:264-73.
- Sinha M, Rani R, Bagga P. Correlation of past tuberculosis with current screening for female genital tuberculosis in infertile women in a tertiary care hospital. Indian J Tuberc 2022;69:577-83.
- Wagner A, Arsenić R, David M, Sehouli J, Vidosavljević D, Rohr I. Peritoneal and upper genital tract tuberculosis. Med Glas (Zenica) 2020;17:86-91.
- 40. Malhotra N, Singh UB, Iyer V, Gupta P, Chandhiok N. Role of laparoscopy in the diagnosis of genital TB in infertile females in the era of molecular tests. J Minim Invasive Gynecol 2020;27:1538-44.
- Iyer VK, Malhotra N, Singh UB, Gupta P, Dhaliwal L, Gainder S, et al. Immunohistochemical evaluation of infiltrating immune cells in endometrial biopsy of female genital tuberculosis. Eur J Obstet Gynecol Reprod Biol 2021;267:174-8.
- Cheng M, Yuan T, Liu Y. A woman with disseminated tuberculosis experienced preterm delivery, fallopian tube pregnancy, and delivered successfully following in vitro fertilization: A case report. BMC Pregnancy Childbirth 2021;21:27.
- Caliskan E, Cakiroglu Y, Sofuoglu K, Doger E, Akar ME, Ozkan SO. Effects of salpingectomy and antituberculosis treatments on fertility results in patients with genital tuberculosis. J Obstet Gynaecol Res 2014;40:2104-9.